Parasupersymmetric quantum mechanics of arbitrary order

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L749
(http://iopscience.iop.org/0305-4470/25/12/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:38

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Parasupersymmetric quantum mechanics of arbitrary order

Avinash Khare
Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India

Received 20 February 1992

Abstract

The parasupersymmetric quantum mechanics of one boson and one parafermion of (arbitrary) order p are constructed. The parasupersymmetry algebra is $Q_{1}^{p} Q_{1}^{+}+$ $Q_{1}^{p-1} Q_{1}^{+} Q_{1}+\ldots+Q_{1} Q_{1}^{+} Q_{1}^{p-1}+Q_{1}^{+} Q_{1}^{p}=2 p Q_{1}^{p-1} H ; Q_{1}^{p+1}=0$ and $\left[H, Q_{1}\right]=0$ where Q_{i} is the parasupercharge and H is the Hamiltonian. It is also shown that such a system always possesses $(p-1)$ other conserved parasupercharges and p bosonic constants. A model of conformal parasupersymmetry of order p is also discussed and it is shown that in this case the algebra has a particularly simple form.

In the last few years supersymmetric quantum mechanics [1] (SQM) has been extensiveiy discussed in the literature. Because of this one has a better understanding of analytically solvable potentials, the relation between spectra of different Hamiltonians, etc. [2]. More than three years back Rubakov and Spiridonov (rS) [3] extended this discussion to the case of parasupersymmetric quantum mechanics (PSQM) of order two. In particular they show that the algebra is given by

$$
\begin{align*}
& Q_{1}^{3}=0 \quad\left[H, Q_{1}\right]=0 \tag{1a}\\
& Q_{1}^{2} Q_{1}^{+}+Q_{1} Q_{1}^{+} Q_{1}+Q_{1}^{+} Q_{1}^{2}=4 Q_{1} H \tag{1b}
\end{align*}
$$

and the Hermitian conjugated relations. Various consequences of this algebra have been discussed by these and other authors. This work has now been extended in several directions [4]. For example, a model of conformal PSQM of order two has been discussed in the literature [5]. The obvious question is if one can generalize the PSQM of order two to that of an (arbitrary) order p [6]. This question was raised by rs themselves [3] who were able to write down the bilinear part of PSQM of order p which is essentially an obvious generalization of $(1 a)$, i.e.

$$
\begin{equation*}
Q_{1}^{p+1}=0 \quad\left[H, Q_{1}\right]=0 . \tag{2}
\end{equation*}
$$

However they could not write the remaining multilinear part of the algebra. As far as the author is aware, this problem has remained unsolved till today even though such multilinear algebra has been written down in the case of special choices of superpotentials [7]. In fact recently Durand et al [8] have discussed this issue in some detail and have concluded that the multilinear part of the higher-order PSQM ($p \geqslant 3$) cannot be characterized with one universal algebraic relation.

In this letter a fresh look at this problem is taken and it is shown that the multilinear part of the PSQM of order p can in fact be characterized with one universal algebraic relation. In particular it is shown that the generalization of relation ($1 b$) for arbitrary p is
$Q_{1}^{p} Q_{1}^{+}+Q_{1}^{p-1} Q_{1}^{+} Q_{1}+\ldots+Q_{1} Q_{1}^{+} Q_{1}^{p-1}+Q_{1}^{+} Q_{1}^{p}=2 p Q_{1}^{p-1} H, \ldots \quad p=1,2 \ldots$.

Notice that one has $(p+1)$ terms on the chs of this relation. Not surprisingly, for $p=1$ we recover the algebraic relations of SQM. Some consequences of the PSQM as given by equations (2) and (3) are also discussed. In particular it is shown that the hierarchy of Hamiltonians $H_{1}, H_{2}, \ldots, H_{p}$ which are connected by sQm and which have $p, p-1, \ldots, 1$ bound states, respectively, form PSQM of order p. Further it is shown that PSQM of degree p always possesses $(p-1)$ other conserved supercharges $Q_{2}, Q_{3}, \ldots, Q_{p}$ and (p) bosonic constants. Also discussed is a special case when the PSQM of degree p can be characterized by simpler multilinear relations like

$$
\begin{align*}
& Q_{1} Q_{1}^{+} Q_{1}=2 Q_{1} H \tag{4a}\\
& Q_{1}^{p} Q_{1}^{+}+Q_{1}^{+} Q_{1}^{p}=2 Q_{1}^{p-1} H . \tag{4b}
\end{align*}
$$

Finally, a model for the conformal PSQM of order p is discussed and it is shown that in this case one has very simple algebra, a part of which is as given by equations (4).

To motivate the whole discussion, let us consider parafermionic operators a and a^{+}of order p. They satisfy the algebra [6]

$$
\begin{align*}
& (a)^{p+1}=0=\left(a^{+}\right)^{p+1}, \ldots \quad \quad p=1,2,3, \ldots \tag{5a}\\
& {\left[\left[a^{+}, a\right], a\right]=-2 a \quad\left[\left[a^{+}, a\right], a^{+}\right]=a^{+} .} \tag{5b}
\end{align*}
$$

On letting

$$
\begin{equation*}
J_{+}=a^{+} \quad J_{-}=a \quad J_{3}=\frac{1}{2}\left[a^{+}, a\right] \tag{6}
\end{equation*}
$$

it immediately follows from equations (5) and (6) that the operators $J_{ \pm}, J_{3}$ satisfy the $\mathrm{SU}(2)$ commutation relations

$$
\begin{equation*}
\left[J_{+}, J_{-}\right]=2 J_{3} \quad\left[J_{3}, J_{ \pm}\right]= \pm J_{ \pm} . \tag{7}
\end{equation*}
$$

Let us choose J_{3} to represent the third component of spin-p/2 representation of the $\operatorname{SU}(2)$ group as given by $J_{3}=\operatorname{dig}(p / 2, p / 2-1, \ldots,-p / 2+1,-p / 2)$. It is then easily checked that the operators a and a^{+}can be represented by the following $(p+1) \times(p+1)$ matrices

$$
\begin{equation*}
(a)_{\alpha, \beta}=C_{\beta} \delta_{\alpha, \beta+1} \quad\left(a^{+}\right)_{\alpha, \beta}=C_{\alpha} \delta_{\alpha+1, \beta} \tag{8a}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{\beta}=\sqrt{\beta(p-\beta+1)}=C_{p-\beta+1} \quad \alpha, \beta=1,2, \ldots, p+1 . \tag{8b}
\end{equation*}
$$

One can now ask what multilinear relation is satisfied by a and a^{+}apart from the bilinear relations as given in (5). It is easily checked that such a multilinear relation is given by ($p=1,2,3, \ldots$)

$$
\begin{equation*}
a^{p} a^{+}+a^{p-1} a^{+} a+\ldots+a a^{+} a^{p-1}+a^{+} a^{p}=\frac{1}{6} p(p+1)(p+2) a^{p-1} \tag{9}
\end{equation*}
$$

where on the Lhs of the equation one has $p+1$ number of terms. This relation strongly suggests that one may have an analogous multilinear relation in the algebra of PSQM of order p.

Following RS [3] we choose the parasupercharges Q_{1} and Q_{1}^{+}as $(p+1) \times(p+1)$ matrices as given by ($\alpha, \beta=1,2, \ldots, p+1$)

$$
\begin{equation*}
\left(Q_{1}\right)_{\alpha \beta}=\left(P-\mathrm{i} W_{\beta}\right) \delta_{\alpha, \beta+1} \quad\left(Q_{1}^{+}\right)_{\alpha \beta}=\left(P+\mathrm{i} W_{\alpha}\right) \delta_{\alpha+1, \beta} \tag{10}
\end{equation*}
$$

Note that, unlike previous workers, we have chosen opposite signs for W. it is not very difficult to show that the Hamiltonian ($m=1, \hbar=1$)

$$
H=+\frac{1}{2}\left(\begin{array}{ccccc}
h_{1} & 0 & \ldots & \cdots & 0 \tag{11}\\
0 & h_{2} & & & \\
\vdots & & \ddots & & \\
0 & 0 & & h_{p} & 0 \\
0 & 0 & \ldots & 0 & h_{p+3}
\end{array}\right)
$$

where

$$
\begin{align*}
& h_{r}=p^{2}+W_{r}^{2}-W_{r}^{\prime}+C_{r} \quad r=1,2, \ldots, p \tag{12a}\\
& h_{p+1}=P^{2}+W_{p}^{2}+W_{p}^{\prime}+C_{p} \tag{12b}
\end{align*}
$$

commutes with the supercharges Q_{1} and Q_{1}^{+}provided [8]

$$
\begin{equation*}
W_{r}^{2}+W_{r}^{\prime}+C_{r}=W_{r+1}^{2}-W_{r+1}^{\prime}+C_{r+1} \quad r=1,2, \ldots,(\rho-1) . \tag{13}
\end{equation*}
$$

Here $C_{1}, C_{2}, \ldots, C_{p}$ are arbitrary constants with dimensions of energy. On using equations (10) to (13) one can show that Q_{1}, Q_{1}^{+}and H satisfy the highly non-trivial multilinear algebra as given by (3) provided

$$
\begin{equation*}
C_{1}+C_{2}+\ldots+C_{D}=0 \tag{14}
\end{equation*}
$$

In the special case when all the constants vanish ($C_{1}=C_{2}=\ldots=C_{p}=0$) then one can, in fact, show that Q_{1} and Q_{1}^{+}as given by (10), satisfy a very simple algebra as given by equations (2) and ($4 a$). On using (2) and ($4 a$) it follows that

$$
\begin{equation*}
Q_{1}^{p-r} Q_{1}^{+} Q_{1}^{r} \approx 2 Q_{1}^{p-1} H \quad r=1,2, \ldots, p-1 \tag{15}
\end{equation*}
$$

so that relation (4b) immediately follows by making use of (15) in (4a).
Some consequences of PSQM of order p are:
(1) The spectrum is $(p+1)$-fold degenerate at least above the first ρ levels. The ground state could be $1,2, \ldots,(p+1)$-fold degenerate depending on the form of the superpotentials.
(2) With the Hamiltonian H one can associate p ordinary S@m Hamiltonians. For example

$$
H_{S U S Y}^{(r)}=\left(\begin{array}{cc}
h_{r}-c_{r} & 0 \tag{16}\\
0 & h_{r+1}-c_{r}
\end{array}\right)
$$

(3) The PSQM system of order p can describe the motion of a particle with spin $p / 2$ in a particular (oscillator or Morse) potential and magnetic field related to this potential.
(4) There is an interesting application of PSQM in the standard quantum mechanics, For example, it is well known that given any potential H_{1} with p bound states with energies $E_{1}, E_{2}, \ldots, E_{p}$ one can always generate p Hamitonians $H_{1}, H_{2}, \ldots, H_{p}$ which have the same spectrum as H_{1} except that $0,1, \ldots, p-1$ levels respectively are missing from them. It is not very difficult to show that the hierarchy of Hamiltonian H_{4}, H_{2}, \ldots, H_{p} form a PSQM system of order p and where the constants $C_{1}, C_{2}, \ldots, C_{p}$ are given by ($r=1,2, \ldots, p$)

$$
\begin{equation*}
C_{r}=\frac{2}{p}\left[E_{p}+E_{p-1}+\ldots-(p-1) E_{r}+E_{r-1}+\ldots+E_{1}\right] . \tag{17}
\end{equation*}
$$

Some other symmetry groups have also been identified with these hierarchy of Hamiltonians [9].
(5) Another application of PSQM is in the case of strictly isospectral Hamiltonians. For example, it is well known that given a potential $V_{1}(x)$ with at least one bound state one can always construct one continuous parameter family of potentials given by [10] ($\lambda>0$ or $\lambda<-1$)

$$
\begin{align*}
& V_{1}(x, \lambda)=V_{1}(x)-2 \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \ln (I(x)+\lambda) \tag{18a}\\
& I(x)=\int_{-\infty}^{x} \psi_{0}^{2}(y) \mathrm{d} y \tag{18b}
\end{align*}
$$

with $\psi_{0}(x)$ being the normalized ground state wavefunction of $V_{1}(x)$. It is not difficult to show that the three potentials $V_{1}(x) \equiv W_{1}^{2}-W_{1}^{\prime}(x), V_{2}(x)=W_{1}^{2}+W_{1}^{\prime}(x)$ and $V_{3}(x) \equiv$ $V_{1}(x, \lambda)$ form PSQM of order 2 in the case $C_{1}=C_{2}=0$.

We now show that given PSQM of order p, apart from Q_{1} one has in fact $(p-1)$ other conserved (independent) supercharges $Q_{2}, Q_{3}, \ldots, Q_{p}$ which are defined by

$$
\begin{align*}
\left(Q_{r}\right)_{\alpha \beta} & =\left(P-\mathrm{i} W_{\beta}\right) \delta_{\alpha, \beta+1} & \beta \neq r \tag{19a}\\
& =-\left(P-\mathrm{i} W_{\beta}\right) \delta_{\alpha, \beta+1} & \beta=r \tag{19b}
\end{align*}
$$

where $\alpha, \beta=1,2, \ldots, p+1, r=2,3, \ldots, p$. It is immediately checked that each of these Q_{r}, Q_{r}^{+}satisfy the algebra of PSQM of order p given by (2) and (3). What are the analogues of equations (3) when more than one Q_{i} are involved? To that end notice that apart from \mathbb{V}, one also has p bosonic constant I_{P} defined by

$$
\begin{align*}
\left(I_{i}\right)_{\alpha \beta} & =\delta_{\alpha \beta} & \alpha \neq i \tag{20a}\\
& =-\delta_{\alpha \beta} & \alpha=i \tag{20b}
\end{align*}
$$

where $i=2,3, \ldots, p+1$ and $\alpha, \beta=1,2, \ldots,(p+1)$. It is immediately seen that $\left[H, I_{i}\right]=$ $0,\left[I_{i}, Q_{j}\right]=\Sigma_{k=1}^{p} \ldots d_{K} Q_{K}$ with d_{K} being constants. Using these bosonic constants one can now write down relations analogous to those of (3) involving all the supercharges \bar{Q}_{i}. For example, in the case of $p=\overline{2}$, one has two supercharges Q_{1} and Q_{2} and the mixed relations analogous to those of (3) are ($i, j=1,2, \quad i \neq j$)

$$
\begin{align*}
& Q_{j} Q_{j}^{+} Q_{i}+Q_{i} Q_{j} Q_{j}^{+}+I_{2} Q_{i}^{+} Q_{i} Q_{j}=4 Q_{i} H \tag{21a}\\
& I_{3} Q_{j}^{2} Q_{i}^{+}+I_{2} Q_{i}^{+} Q_{j}^{2}+Q_{j} Q_{i}^{+} Q_{j}=4 Q_{i} H . \tag{21b}
\end{align*}
$$

It is worth noting that these relations are all independent of the constants C_{i} unlike some previous attempts in the literature [11]. Generalization of these relations to arbitrary p is immediate.

Finally we discuss a PSQM model of order p which is in addition conformally invariant and show that, unlike the previous claim [8], the parafermionic charges obey very simple relations. In particular we take

$$
\begin{equation*}
W_{1}=\frac{\lambda}{x}, W_{2}=\frac{\lambda+1}{x}, \ldots, W_{r}=\frac{\lambda+p-1}{x} \tag{22}
\end{equation*}
$$

so that equations (14) are satisfied with $C_{1}=C_{2}=C_{3} \ldots=C_{p}=0$. Hence, as shown above, the parasupersymmetric algebra takes a very simple form and is given by
equations (2) and (4). In this case one can also define the dilatation operator D, the conformal operator K, the hypercharge Y and the superconformal charge S_{1} by

$$
\begin{array}{ll}
D=-\frac{1}{4}(x p+p x) & K=\frac{1}{2} x^{2} \quad Y=\frac{1}{2}\left(J_{3}-\lambda-\frac{p+1}{2}\right) \\
\left(S_{1}\right)_{\alpha \beta}=-x \delta_{\alpha, \beta+1} & \alpha, \beta=1,2, \ldots,(p+1) . \tag{23}
\end{array}
$$

The algebra satisfied by Q_{1} and S_{1} with D, K, Y, H is standard [5]. Once again it turns out that one has in fact $(p-1)$ other conserved supercharges and superconformal charges Q_{2}, \ldots, Q_{p} and S_{2}, \ldots, S_{p} respectively which are defined analogously as in equations (19) and (20). For example in the case of $p=2$ one has two supercharges Q_{1}, Q_{2} and two superconformal charges S_{1} and S_{2} and they satisfy

$$
\begin{array}{ll}
S_{i} Q_{j}^{+} Q_{j}=2 S_{i} H \quad Q_{i} S_{j}^{+} S_{j}=2 Q_{i} K \\
S_{i} S_{j}^{+} S_{j}=2 S_{i} K \quad Q_{i} Q_{j}^{+} Q_{j}=2 Q_{i} H \\
Q_{j} S_{j}^{+} Q_{i}=2 Q_{i}(D+\mathrm{i} Y) \quad S_{j} S_{j}^{+} Q_{i}=2 S_{i}(D+\mathrm{i} Y) \tag{24}\\
Q_{j} Q_{j}^{+} S_{i}=2 Q_{i}(D-\mathrm{i} Y) \quad S_{j} S_{j}^{+} Q_{i}=2 S_{i}(D+\mathrm{i} Y)
\end{array}
$$

pius many other analogous relations. Generaiization to the case of arbitrary p is immediate. Details of this work along with the discussion of various related issues will be published elsewhere [12]. Recently à la parastatistics, orthostatistics has also been discussed [13]. We have been able to construct a model of orthosupersymmetric quantum mechanics of order p [14].

It is a pleasure to thank Trilochan Pradhan for giving me an interest in the area of parasupersymmetry, and for some useful discussions.

References

[1] Witten E 1981 Nucl. Phys. B 185513
Cooper F and Freedman B 1983 Ann. Phys., NY 146262
[2] Gendenshtein L E and Krive I V 1985 Usp. Fiz. Nauk 146553
Dutt R, Khare A and Sukhatme U P 1988 Am. J. Phys. 56 163; 1991 Am. J. Phys. 59723
Khare A and Sukhatme U P 1992 Physics News (India)
Lahiri A, Roy P K and Bagchi B 1990 J. Mod. Phys. A 51383
[3] Rubakov V A and Spiridonov V P 1988 Mod. Phys. Lett. A 31337
[4] Beckers J and Debergh N 1989 Mod. Phys. Let!. A 4 1209, 2289; 1990 J. Math. Phys. 31 1523; 1090 Nucl. Phys. B 340 777; 1990 J. Phys. A: Math. Gen. 23 L751, L1073
Durand S and Vinet L 1990 J. Phys. A: Math. Gen. 233661
Durand S, Floreanini R, Mayrand M and Vinet L 1989 Phys. Lett. 233B 158
Spiridonov V P 1991 J. Phys. A: Math. Gen. 24 L529
Andrianov A A and Ioffe M V 1991 Phys. Lett. 255B 543
Andrianov A A, Ioffe M V, Spiridonov V P and Vinet L 1991 Phys. Lett. 272B 297
Merkel V 1990 Mod. Phys. Lett. A 52555
[5] Dutand S and Vinet L 1989 Mod. Phys. Lett. A 42519
[6] Green H S 1953 Phys. Rev. 90270
Ohnuki Y and Kamefuchi S 1982 Quantum Field Theory and Parastatistics (Tokyo: University of Tokyo Press)
[7] Merkel U 1991 Mod. Phys. Lett. A 6199
[8] Durand S, Mayrand M, Spiridonov V and Vinet L 1991 Mod. Phys. Lett. A 63163
[9] Cooper F, Ginocchio J N and Khare A 1987 Phys. Rev. D 362458
[10] Nieto M M 1984 Phys. Lett. 145B 208
[11] Durand S and Vinet L 1990 Phys. Lett. 146 ' 299
[12] Khare A Bhubaneswar Preprint IP/BBSR/92-12
[13] Misra A K and Rajasekaran G 1991 Pramana 36537
[14] Khare A and Rajasekaran G 1992 in preparation

